Single Pair Ethernet (SPE)

Ethernet in the early 1980s used a passive 9.5mm co-axial cable (Thicknet) in a trunkline/dropline topology. Vampire network taps were used to connect nodes to the network.

Now, instead of that huge, 9.5mm coax, in the near future we’ll have Single Pair Ethernet (SPE); a twisted pair cable carrying both power and data. SPE is smaller, lighter, easier to deploy and supports daisy-chained configurations.


Figure 1 – Early Ethernet Tap Circa 1980

What is Single Pair Ethernet (SPE)?

The IEEE specifies a number of standards for Ethernet communications. The 802.3 set of standards specifies the operation of what we know as Ethernet through twisted pair wires. The 802.11 set of standards specifies the operation of what we know as Ethernet through the air. These standards specify the kinds of wire, connectors, electrical signaling, timing, bus control and much more that is required to create a functional Ethernet network.

Single Pair Ethernet is simply another set of 802.3 physical media standard for moving signals over twisted pair cables. Most of us are familiar with the most common 802.3 standard, 10BASE-T where:

Ethernet Standard Structure 10BASE-T

Figure 2 – Structure of Ethernet Standard

The most common current standards for specifying how Ethernet messages move across twisted pair cables are shown in Figure 3. In the first two, separate pairs of wires are used for Transmit and Receive. In the 1GBASE-T standard, each pair of wires supports both transmit and receive.

802.3 Standard

Figure 3 – Current 802.3 Standards

Single Pair Ethernet comprises a set of 802.3 standards for moving Ethernet messages across one single pair of twisted cable. Instead of the two four wires used for 100 Mbit Ethernet or the eight wires used for Gbit Ethernet, SPE uses only two wires. And just like those wired and wireless Ethernet networks, there is an Ethernet MAC and PHY for each SPE standard.

The SPE Ethernet MAC is similar to other Ethernet MACs. It manages access to the Ethernet network and the other housekeeping needed to synchronize with other nodes on the network. The Ethernet PHY, like other Ethernet PHYs, converts between the analog signal on the wire and the digital bits used by the MAC.

What are the SPE Standards?

Like most of these technologies, it’s easy to get lost in the nomenclature of all the different standards. You can find a cheat sheet of the most important standards in the table below.

IEEE STANDARD

STANDARD

BANDWIDTH

MAX DIST

RELEASED

NOTES

802.3bw100Base-T1100 Mbit/s15m2015In Vehicle, Encoders
802.3bp1000Base-T11 Gbit/s15-40m2016Robotics/CNC
802.3cg10Base-T1S10 Mbit/s25m2019Multidrop CAN replacement
802.3cg10Base-T1L10 Mbit/s1 Km2019Process Transmitters
802.3buTBDTBDTBDTBDPower over Data Line
802.3ch10GBase-T110 Gbit/s15mTBDTBD

The 802.3bw standard is the most important one for in-vehicle applications. Automated vehicles require vastly more sensor data, extremely fast communication and short-range operation. The 802.3bw standard is the one to satisfy that application.

802.3bp is the standard for fast Robotic applications. SPE is particularly important to robotics as the bending radius of SPE cabling is vastly improved over today’s options. 802.3bu is the standard that specifies SPE with Power Over Data Lines (PODL) sometimes called “poodle.”

The standard most important to us in automation is the 802.3cg standard. Two 802.3cg standards are important: the short-range standard, 10BASET1S, and the long-range standard, 10BASET1L. The short-range standard provides a method of using IP in discrete applications currently implementing Controller Area networking (CAN), DeviceNet, PROFIBUS DP. The long-range standard provides an IP replacement for process applications using HART and PROFIBUS PA.

The applications for these standards are presented in Figure 4.

current and SPE connectivity standards

Figure 4 – Comparison of current and SPE connectivity standards

Why SPE?

Single Pair Ethernet is being driven by three big trends:

New requirements for vastly more factory floor data. Industry 4.0 is useless unless the Internet of Things (IoT) can deliver the vast amounts of data required to power analytics, machine learning, preventive maintenance and AI applications that are needed. Manufacturers are facing a world where they must make machines smarter, processes leaner, factories more efficient and productivity higher. This is nearly impossible to do with much of today’s existing factory floor networking infrastructure.

One media: manufacturers are tired of all the various technologies on the factory floor and the associated spare parts, training and differing procedures that are required to support them. Using IP (Internet Protocol) from the Cloud to the control system to the field sensor is more efficient and less costly than using a varied set of technologies.

Autonomous vehicles: backup cameras, lane warning systems, adaptive cruise control systems and all the other systems in autonomous vehicles are profligate users of data. More bandwidth, more speed and more sensors are required to get that data. Automotive designers want low weight, inexpensive media and standard connectivity; all fortes of SPE.

That last requirement may shed light on the future of industrial automation. What’s been true in the past is that technologies developed for other more mainstream and larger volume applications eventually find their way onto the factory floor. The volumes of SPE delivered to the vehicle market should reduce prices on the factory floor.

 

Like what you’re reading?

Subscribe to our Automation Education email series to learn the ins and outs of the top industrial protocols in a byte-size weekly format!

 

What are the Benefits of SPE?

SPE is designed to deliver a number of important benefits to the user:

  • Thinner cables – thinner cabling not only save weight but require less room in wire trays, cost less and allow for a greater turning radius; important in applications with moving components.
  • Save weight – thinner cables with few conductors, of course, save weight; something important in any moving vehicle from the small pallet mover to an automobile.
  • Decreased space requirements – thinner cables take up less space in panels and wire trays.
  • Smaller bending radii – a small bending radii is very important to robotic system implementation.
  • Less materials – small cables use less copper and other plastic resources.

What Applications are Best for SPE?

SPE benefits – thinner, lower weight, less costly cabling – are extremely important in transportation applications like rail, automobiles, and trucks. Rail cars, for example, use hundreds of meters of wire and SPE has the potential of vastly decreasing wiring costs.

Building automation is another area where less costly cabling can really add up. Even in an era when most users use wireless Ethernet, the access points must be wired. Using less costly SPE wiring can save hundreds of thousands of dollars in large buildings.

SPE is also touted for process control but the benefits in that industry are less clear. HART® is currently the standard with somewhere near 30 million nodes implemented. HART has many benefits, but speed is not one of them. Operating at 1200 baud, changing even a small percentage of the thousands of HART transmitters in a process plants can take weeks.

SPE in discrete automation is another industry where the benefits are less clear. Some version of SPE for hazardous areas will be popular. It is not expected that SPE can add value to much of what’s already used on the factory floor.

What are the SPE Hardware Considerations?

SPE is implemented just like other 802.3 Ethernet applications with a custom MAC and PHY. Several manufacturers, notably Analog Devices and TI, are hard at work on these components and production releases are planned for 2021.

The Texas Instruments DP83TD510E SPE PHY transceiver IC, for example, provides not only basic 802.3cg functionality but extends the 10BASE-T1L specification to provide a maximum distance of 1700 meters. Equivalent devices can be expected from Analog Devices and other manufacturers.

IC Block Diagram

Figure 5 –Texas Instruments DP83TD510E SPE PHY transceiver IC block diagram

What are the Software Issues?

What’s often missed is that SPE is simply a medium for transmission of the IP protocol just like standard wired and wireless Ethernet. Any software application that uses TCP/IP can communicate over SPE. No changes. Nothing different. There are no software issues particular to SPE.

What is the future outlook?

There are many versions of SPE and many applications for it and that makes the future hard to predict. SPE will certainly have an impact on transportation and building automation. The lower cabling costs will drive the deployment of SPE in both industries. Lower power requirements will drive the deployment in hazardous applications. Its impact in process and discrete automation remains to be seen.

Will it drive the replacement of DeviceNet and PROFIBUS? Probably not. Many of those applications are being converted to standard 10BaseT already. DeviceNet and PROFIBUS are heavily used in conveyor applications where cost matters so it could have an impact there. In other factory automation applications, it’s not clear.

for more information

You can get a lightweight EtherNet/IP for SPE device from Real Time Automation. For more information on what EtherNet/IP solutions are available to you, visit RTA Software Products or for information on EtherNet/IP, visit EtherNet/IP Overview page. You can always talk with one of our application specialists by calling 800-249-1612 or emailing sales@rtautomation.com.